Syllabus of 4 + 1 Year Integrated UG and PG Programme

w. e. f 2024-25 Academic Year

GRADUATE SCHOOL Mahatma Gandhi University P. D. Hills P O Kottayam, Kerala <u>www.gs.mgu.ac.in</u> <u>www.mgu.ac.in</u>

Schools offering Majors

SL.No	School/Centre
1	School of Bio Sciences
2	School of Chemical Sciences
3	School of Computer Sciences
4	School of Environmental Sciences
5	School of Gandhian Thought and Development Studies
6	School of International Relations and Politics
7	School of Pure and Applied Physics
8	School of Social Sciences

Sl. No.	Major	Intake
	SCIENCE	
1	Bio Sciences	6**
2	Chemistry	6
3	Computer Science	6
4	Environmental Science	6
5	Physics	6
	SOCIAL SCIENCES	
1	Development Studies	5
2	Gandhian Studies	5
3	History	10
4	International Relations and Politics	10

Majors offered and Intake *1 seat shall be sanctioned over and above the intake in each major in the 3rd semester for students who opt for a change of major after two semesters.

**Progression to PG Shall be based on the specialization selected by students as Biochemistry (2 seats) Biotechnology (2 seats) and Microbiology (2 seats) based on merit.

Schools offering Minors/MDCs/AECs/VACs/SECs

SL.No	School/Centre
1	School of Artificial Intelligence And Robotics
2	School of Behavioural Sciences
3	School of Biosciences
4	School of Chemical Sciences
5	School of Computer Sciences
6	School of Data Analytics
7	School of Energy Materials
8	School of Environmental Sciences
9	School of Food Science And Technology
10	School of Gandhian Thought And Development Studies
11	School of Gender Studies
12	School of Indian Legal Thought
13	School of International Relations And Politics
14	School of Letters
15	School of Mathematics And Statistics
16	School of Nanoscience And Nano Technology
17	School of Pedagogical Sciences
18	School of Polymer Science And Technology
19	School of Pure And Applied Physics
20	School of Social Sciences
21	School of Tourism Studies
22	International and Inter University Centre for Nanoscience and Nanotechnology
23	K N Raj School of Economics

Scheme for 4 + 1 Integrated UG and PG Programme Graduate School Mahatma Gandhi University

Course Code	Title	Credit	Hours per Week		Level	Туре	
			Theo ry	Practi cal's			
	SEMESI	ER I					
	Major	4			Foundat ion (100-19 9)		
MG1DSCUEM121	Fundamentals of Material Science	4	2	2	"	Minor	
MG1DSCUEM141	Basics of Energy Science	4	2	2	"	Minor	
MG1MDCUEM101	Energy crisis and Sustainable solutions	3	3	-	"	MDC	
	AEC (Eng)	3			"		
	AEC (Mal)	3			"		
	SEMEST	ER II			i		
	Major	4			"		
MG2DSCUEM121	Physics of Materials	4	2	2	"	Minor	
MG2DSCUEM141	Materials Chemistry	4	2	2	"	Minor	
MG2MDCUEM101	Fundamentals of Electrochemical Devices	3	3	-	"	MDC	
MG2MDCUEM102	Bio Energy	3	3	-			
	AEC (Eng)	3			"		
	3			"			
	SEMEST	ER III		1	•		
	Major	4			Interme diate (200-29 9)		
	Major	4			"		
	Major	4			"		
MG3DSCUEM221	Energy Conversion, Storage and Transportation	4	2	2	"		
MG3DSCUEM222	Introduction to Numerical Methods	4	2	2		Minor	
MG3MDCUEM201	Energy Management, Economics and Policies	3	3	-	"	MDC	
MG3MDCUEM202	Solar Photovoltaics	3	3	-			
MG3VACUEM201	Renewable Energy Systems	3	3	-	"	VAC	
MG3VACUEM202	Quantitative Aptitude and Reasoning	3	3	-			
	SEMESTER IV						
	Major	4			"		
	Major	4			"		
	Major	4			"		
MG4DSCUEM241	Hydrogen and Fuel cells	4	2	2	"	Minor	
MG4DSCUEM242	Heat and Thermodynamics	4	2	2			
MG4SECUEM201	Software Tools for Energy Analysis	3	3	-	"	SEC	
MG4SECUEM202	Innovative Techniques in Academic Writing	3	3	-			

MG4VACUEM201	Waste to Energy Conversion	3	3	-	"	VAC
MG4VACUEM202	Smart materials and structures	3	3	-		
	Internship/Fieldwork	2				
	SEMEST	ER V				
	Major	4			Higher (300-39 9)	
	Major	4			"	
	Major	4			"	
	Major	4			"	
MG5SECUEM301	Design and Installation of Solar panels	3	2	2	"	SEC
MG5SECUEM302	Thin film Fabrication Techniques	3	2	2		
MG5VACUEM301	Batteries and Supercapacitors	3	3	-	"	VAC
MG5VACUEM302	Innovation and	3	3	-		
	Entrepreneurship					
	SEMEST	ER VI				
	Major	4			"	
	Major	4			"	
	Major	4			"	
	Major (E)	4			"	
	Major (E)	4			"	
MG6SECUEM301	Flexible Electronics	3	2	2	"	SEC
MG6SECUEM302	Advanced Electrochemical Devices	3	2	2]	
1	Total Credits					

SEMESTER VII							
	Major	4			Advanc ed		
					(400-49		
					9)		
	Major (E)	4			"		
	Major (E)	4			"		
MG7DSCUEM421	Electric Vehicle	4	2	2	"	Minor	
	Design						
MG7DSCUEM422	MEMS &	4	2	2			
	Nanofabrication						
MG7DSCUEM423	Spectroscopic	4	2	2			
	Techniques for						
	Material Science						
MG7DSEUEM424	Nanomaterials for	4	2	2	"	Minor	
	Energy Harvesting						
	and Storage						
	Applications						
MG7DSEUEM441	Structural &	4	2	2	"	Minor	
	Morphological						
	Characterization						
	Techniques						
	1	SEMEST	ER VIII			1	
	Major	4			"		
	Major (E)	4			"		
	Research Project	12			"		
	Major*	4			"		
	Major*	4			"		

	Major*	4		"	
Total	Credits	44			
		SEMES1	ER IX		
	Major	4		PG	
				Level	
				(500-59	
				9)	
	Major	4		"	
	Major	4		"	
	Major	4		"	
	Major	4		"	
		SEMES'	TER X		
	Research Project	20		"	
	Major**	4		"	
	Major**	4		"	
	Major**	4		"	
	Major**	4		"	
	Major**	4		"	
Total Credits		40			

*Only for 4-Years Honours Students

**Only for students who opt for theory courses instead of Research Project

Note: General foundations courses shall be offered by different schools. Students can flexibly choose the courses across disciplines.

Level	Foundation	Intermediate	Highe	Advance	PG
	(100-199	(200-299)	r	d	Level
			(300-	(400-499	(500-
			399))	599)

Туре	Majo	Mino	MDC	SEC	VAC	AEC
	r	r				

<u>SEMESTER I</u>

	MAHATMA GANDHI UNIVERSITY Graduate School					
ातिग्रया अपृतमञ्जूत	4 + 1 Integrated UG and PG Programme					
School Name	School of Energy Materials					
Programme	4 + 1 Integrated UG and PG Prog	gramme				
Course Title	Fundamentals of Material Science	ce				
Course Type	Minor					
Course Level	100-199					
Course Code	MG1DSCUEM121					
Course Overview	This foundational course introduce materials science. Beginning with chemical bonding, including ionic, students gain a comprehensive blocks of matter. They then move about lattice points, unit cells, cryst ray diffraction techniques. Study including point defects, dislocation their impact on material proper mechanisms, emphasizing Fick's Through classroom lectures, discu- solid foundation in materials science engineering applications.	aces students to the essential principles of th an examination of atomic structure and , covalent, metallic, and intermolecular bonds understanding of the fundamental building e to crystal structure and properties, learning ystal systems, and advanced topics such as X- lents will explore imperfections in solids ons, and interfacial defects, and understand perties. The course also covers diffusion ussion and assignments, students will gain a ce, preparing them for advanced studies and				
Semester	1	Credit 4				
Total Student	Instructional hours for theory	Instructional hours for practical/lab				
Learning Time	45 Hours Tooshing Hour	work/field work				
	45 Hours leacning Hour	SU HOUR PRACTICUM				
Pre-requisite	A solid understanding of calculus,	physics, and chemistry is required.				

СО	Expected Course Outcome	Learning	PSO No.
No.	Upon completion of this course, students will be able to;	Domains	
1	To know the evolution of materials science and understanding materials around us.	U	
2	Explain and Analyse various atomic bonds (ionic, covalent, metallic, van der Waals, dipole) and their energies.	U, An	

3	Analyse atomic structure, Crystal structure, Crystal axes and planes, X-ray diffraction data.	U, A, An				
4	Identify and classify defects (point defects, impurities, dislocations, interfacial, bulk) and understand atomic vibrations' impact on materials.	U				
5	Explain diffusion mechanisms, apply Fick's laws of diffusion, and analyse factors influencing diffusion in materials.	U, A, An				
*Remen	*Remember (R), Understand (U), Apply (A), Analyse (An), Evaluate (E), Create (C), Skill (S),					
Interest	(I) and Appreciation (Ap)					

Module 1	СО	Hours	
	No.		
Introduction to engineering materials, Description of materials science,			
Classification of Materials, Atomic structure, Bohr atom model, Quantum			
numbers, Basic ideas of bonding, bonding forces and energies, ionic	1,2	13 Hours	
bonding, covalent bonding (hybridization), metallic bonding, van der			
Waals bonding, dipole bonds			
Module 2			
Lattice points and space lattice, basis and crystal structure, unit cell and			
primitive cell, seven crystal systems and fourteen Bravais space lattice,			
coordination number, nearest neighbour distance, atomic radius, atomic	3		
packing factor in crystal structure, calculation of lattice constant, lattice	5	13 Hours	
planes and Miller indices, separation between lattice planes, single			
crystals and polycrystalline materials, amorphous materials, X-ray			
diffraction, Bragg's law of X-ray diffraction.			
Module 3			
Imperfections in Solids: Point Defects, Vacancies and Self-Interstitials,			
Impurities in Solids, Dislocations-Linear Defects, Interfacial Defects,	s, 4 9 Hours		
Bulk or Volume Defects, Atomic Vibrations			
Module 4			
Diffusion phenomenon: Diffusion Mechanisms; Vacancy Diffusion and	5		
Interstitial Diffusion, Steady-State Diffusion; Fick's first law, Nonsteady-	5	10 Hours	
State Diffusion; Fick's second law, Factors that influence Diffusion			

Mode of Transaction	Classroom activities
	Authentic learning, case-based learning, collaborative learning, seminar,
	group activities.

Mode of Assessment	1. Continuous Internal Assessment		
	(CIA) Internal Test		
	Assignment – Every student needs to write an assignment on a given		
	topic based on the available published literature		
	2. Seminar Presentation – A topic needs to be presented and		
	discussed with the class		
	3. Semester End Examination		

- 1. Callister, William D., and David G. Rethwisch. *Fundamentals of materials science and engineering*. Vol. 471660817. London: Wiley, 2000.
- 2. William F. Smith, and Javad Hashemi. *Foundations of materials science and engineering*. Mcgraw- Hill Publishing, 2006.
- 3. Wahab, Mohammad Abdul. *Solid state physics: structure and properties of materials.* Alpha Science Int'l Ltd., 2005.
- 4. C. Kittel, Introduction to solid state physics

Relevance of Learning the course/ Employability of the course

Understanding engineering materials is essential for a wide range of industries and fields, making this course highly relevant for students pursuing careers in materials science, and related disciplines. It covers the atomic and molecular principles that governs material properties, essential for selecting and developing materials with tailored characteristics for specific applications. By exploring crystal structures, imperfections and diffusion phenomena in solids, the course enables students to advance in fields such as structural engineering, and nanotechnology.

	MAHATMA GANDHI UNIVERSITY Graduate School					
/विद्यया अपृतमयनुत	4 + 1 Integrated UG and PG Programme					
School Name	School of Energy Materials					
Programme	4 + 1 Integrated UG and PG Prog	ramme				
Course Title	Basics of Energy Science					
Course Type	Minor					
Course Level	100-199					
Course Code	MG1DSCUEM141					
Course Overvie w	The course provides a comprehensive introduction to the fundamental principles and contemporary issues in energy production, utilization, and sustainability. This course covers a wide range of topics, including current energy scenarios, renewable energy sources, environmental impacts, and advanced energy storage technologies. It aims to equip students with the foundational knowledge necessary to understand and engage with the evolving landscape of energy science.					
Semester	1 Credit 4					
Total Student	Instructional hours for theory Instructional hours for practical/lab					
Learning Time	work/field work					
	45 Hours Teaching Hours 30 Hour Practicum					
Pre-requisite	No prior knowledge of energy science is required. A basic understanding of					
	high school-level physics and chemistry will be beneficial.					

СО	Expected Course Outcome	Learning	PSO No.
No.		Domains	
1	To investigate the correlations between energy production/utilization and environmental impact, emphasizing global warming and environmental degradation.	U, An	
2	To Explain Various Non-Conventional Energy Resources and their Usage.	E	

3	To compare biological energy sources with fossil fuels,	E, A	
	analysing their environmental impacts and sustainability.		

4	To study the principles of photovoltaic energy conversion and	R, A, S		
	the functioning of various types of photovoltaic cells.			
5	To understand the nanostructured materials, primary and	C, An		
	secondary batteries, lithium-ion batteries, and the principles			
	and trends of capacitors and supercapacitors.			
*Remember (R), Understand (U), Apply (A), Analyse (An), Evaluate (E), Create (C), Skill (S),				
Interest (I) and Appreciation (Ap)				

Module 1	Hours	CO No.
Fundamentals of Energy : Current energy scenario; Outline of alternative energy schemes, clean low cost, sustainable energy production based on renewable energy sources, Energy and environment correlations, Environmental degradation due to energy production and utilization, global warming; Environmental impact assessment of materials used in energy and applications and their properties, Overview of biomass as energy source, Biofuels.	10	1
Module 2		
Conventional & Non-Conventional Energy Source : Biological energy sources and fossil fuels, Fluid dynamics and power in the wind, available resources, fluids, viscosity, types of fluid flow, lift, Wind turbine dynamics and design, wind farms, Geothermal power and ocean thermal energy conversion, Tidal/wave/hydro power	10	2,3
Module 3		
Solar Energy: Fundamentals of solar radiation and its measurement aspects, Basic physics of semiconductors, Carrier transport, generation and recombination in semiconductors, Semiconductor junctions: metal-semiconductor junction & p-n junction, Solar thermal conversion, principles of photovoltaic energy conversion, Types of photovoltaic cells, first, second and third generation solar cells, PV system design and economics.	13	4
Module 4		
	12	5

Materials & devices for energy storage: Issues and challenges of	
functional nanostructured materials for electrochemical energy storage	
systems, Primary and Secondary batteries, Lithium-ion batteries, Current	
status and future trends. Capacitor, Electrochemical supercapacitors,	
Current status and future trends.	

Mode of Transaction	Classroom	activities			
	Authentic	learning,	case-based	learning,	collaborative
	learning, se	eminar, gro	up activities.		

Mode of Assessment	1. Continuous Internal Assessment	
	(CIA) Internal Test	
	Assignment – Every student needs to write an assignment on a	
	given topic based on the available published literature	
	2. Seminar Presentation – A topic needs to be presented and	
	discussed with the class	
	3. Semester End Examination	

- 1. Energy and the Challenge of Sustainability, World Energy Assessment, UNDP, New York, (2000).
- Physics of Solar Cells: From Basic Principles to Advanced Concepts by Peter Wurfel, John Wiley & Sons, 2016
- 3. Advanced Nanomaterials and their applications in Renewable energy, Jingbio louise Liu, Sajid Bashir, Elsevier, 2015
- 4. Nanostructured Materials for Solar Energy Conversion, Tetsuo Soga, Elsevier, 2006
- 5. Lithium Batteries: Science and Technology, G.A. Nazri and G. Pistoia, Kluwer Academic Publishers, Dordrecht, Netherlands, 2004.

Relevance of Learning the course/ Employability of the course

As the world shifts towards sustainable and renewable energy sources, understanding the fundamental principles of energy science becomes crucial. This course equips students with essential knowledge about various energy forms, conversion processes, and storage technologies, making them well-prepared to tackle contemporary energy challenges. With a strong foundation in energy science, graduates are highly employable in diverse sectors such as renewable energy, energy management, environmental consultancy, and research and development. This expertise is invaluable for roles in government agencies, private industry, and non-profit organizations dedicated to advancing sustainable energy solutions and improving energy efficiency.

Maran Suganurgi	MAHATMA GANDHI UNIVERSITY Graduate School				
	4 + 1 Integrated UG and PG Programme				
School Name	School of Energy Materials				
Programme	4 + 1 Integrated UG and PG Prog	ramme			
Course Title	Energy Crisis and Sustainable sol	utions			
Course Type	Multi - Disciplinary Course (MDC	C)			
Course Level	100-199				
Course Code	MG1MDCUEM101				
Course Overview	This course provides a comprehensive examination of the global energy crisis, exploring the causes, impacts, and potential solutions to the world's growing energy demands and challenges. The course covers a wide range of topics including fossil fuels, renewable energy sources, energy efficiency, and solutions to prevent energy crisis. This course will discuss the sources, generation, transportation/distribution, and use of energy as well as the efficiency, side-effects, and dangers that are involved. Students will gain an understanding of the technical, economic, environmental, and geopolitical dimensions of energy production and consumption. Modern sustainable technologies for transportation to lighting, from industry to individual homes,				
Semester	1	Credit	3		
Total Student	Instructional hours for theory Instructional hours for practical/lab				
Learning Time	work/field work				
Pre-requisite	This course has no prerequisites and	l can be taken by	anyone.		

CO No.	Expected Course Outcome	Learning	PSO
	Upon completion of this course, students will be able to;	Domains	No.
1	To understand the various forms of energy and its importance	U	
2	To get an insight of energy crisis and energy conservation practices. Critically analyze the factors contributing to the global energy crisis.	U, An	

3	Understand the key factors influencing energy demand and	U	
	consumption.		
4	Identify and evaluate various solutions to prevent the energy crisis.	U, An, E	
5	Develop strategic plans for integrating multiple solutions to address the energy crisis.	U, A, E	
*Remember (R), Understand (U), Apply (A), Analyse (An), Evaluate (E), Create (C), Skill			
(S), Interest (I) and Appreciation (Ap)			

Module 1	Hours	CO No.
Energy Scenario: Commercial and Non-Commercial Energy, Primary Energy Resources, Commercial Energy Production, Final Energy Consumption, Energy Needs of Growing Economy, Long Term Energy Scenario, Energy Pricing, Energy Sector Reforms. Fossil fuels and Renewable sources including Bio-fuels in India - Their utilization pattern in the past, present and future. Module 2 Energy crisis –History of Energy Crisis - Types of Energy Crisis - Major cause of energy crisis - Over consumption, over population - Impact of Energy Crisis – Energy Crisis in India Unexplored	10	1
Renewable Energy Options – Commissioning of Power Plants.		
Module 3 Energy Demand and Sustainable Solutions; Energy consumption – energy consumption (per capita) and economic growth - Global energy consumption – Energy demand – primary energy demand and cumulative energy demand. Solutions to Prevent Energy Crisis - Embracing Renewable Energy - Enhancing Energy Efficiency - Innovating Energy Storage and Transmission - Advancing Nuclear Energy- Implementing Sustainable Energy Policies.	13	3,4
Module 4 Sustainable Technologies: Introduction of Energy storage systems- Mechanical energy storage technologies - Conventional thermal energy conversion - Solar energy technologies - Wind energy technology- Batteries -Supercapacitors - Fuel cells - Tidal Energy - Thermal and vibrational energy harvesting - Water treatment and remediation.	13	5

Mode of Transaction	Classroom
	activities Field
	activities
	Lab based activities
Mode of Assessment	1. Continuous Internal Assessment (CIA)
	Internal Test
	Assignment – Every student needs to write an assignment on a
	given topic based on the available published literature
	2. Seminar Presentation – A topic needs to be presented and
	discussed with the class
	3. Semester End Examination

- 1. Albert Thumann, D. Paul Mehta, *Handbook of Energy Engineering*, The Fairmont Press Inc 6th edition, 2008.
- 2. D. Yogi Goswami, Frank Kreith, *Energy Management and Conservation Handbook*, CRC Press, 2007
- 3. Thipse. S.S. *Non- Conventional and Renewable energy sources*, Narosa Publishing House, 2014.
- 4. Robert A. Huggins, Energy storage, Springer Science & Business Media, 2010
- 5. Jenny A. Nelson, *The Physics of Solar Cells*, World Scientific Publishing Company, 2003.
- 6. Robert Huggins, Advanced Batteries: Materials Science Aspects, Springer; 2009.

Relevance of Learning the course/ Employability of the course

This course will give an overview to prevent an energy crisis is learning how to conserve energy, improving, and modernizing energy infrastructure with the help of sustainable technologies. By the end of this course students will be able to appreciate the physics of metals, semiconductors and insulators. The implementation of this course will help the students to understand specific techniques to resolve the energy problem.

After completing the course, you will attain the ability to evaluate, appraise and provide solutions to the current energy crisis in the world.

<u>SEMESTER II</u>

	MAHATMA GANDHI UNIVERSITY				
विद्यया अप्रतमधन्त	Graduate School				
	4 + 1 Integrated UG	and PG Programn	ne		
School Name	School of Energy Materials				
Programme	4 + 1 Integrated UG and PG Progra	mme			
Course Title	Physics of Materials				
Course Type	Minor				
Course Level	100-199				
Course Code	MG2DSCUEM121				
Course	This course provides an in-depth understanding of the physics of materials,				
Overvie	focusing on the fundamental properties of various materials. Students will				
W	explore semiconductor physics, dielectric properties such as polarization and				
	dielectric constants, and light-matter	interactions inclu	uding reflection	1 and	
	refraction. The course also covers ma	agnetic properties,	the classification	on of	
	magnetic materials, and the phenomenon of superconductivity. Through				
	these topics, students will gain comprehensive knowledge of material				
	behaviours and their applications in m	odern technology.			
Semester	2	Credit 4			
Total Student	Instructional hours for theory	Instructional	hours	for	
Learning Time		practical/lab wo	rk/field work		
	45 Hours Teaching Hours	30 Hours Practicum			
Pre-requisite	te A solid grounding in introductory physics and basic materials science				
	principles are required				

СО	Expected Course Outcome	Learning	PSO
No.	Upon completion of this course, students will be able to;	Domains	No.
1	Differentiate crystalline and amorphous solids, understand	R, U	
	lattice structures, unit cells, and Bravais lattices in seven crystal		
	systems		
	systems		

2	Gain knowledge of intrinsic and extrinsic semiconductors, band gaps, carrier concentrations, and the influence of doping on Fermi level.	R, U, An	
3	Describe the dielectric properties of materials, including polarization, capacitance, and ferroelectricity, and relate them to the underlying molecular structure.	U, An	
4	Explain the interaction of light with matter, including reflection, refraction, absorption, and emission processes.	U, An	
5	Classify magnetic materials based on their atomic structure and magnetic properties, and explain phenomena like diamagnetism, superconductivity, and hysteresis.	U, A, An	
*Reme	mber (R), Understand (U), Apply (A), Analyse (An), Evaluate (E), Create (C), Skill
(S), Inte	erest (I) and Appreciation (Ap)		

Module 1	Hours	CO
		No.
Crystallography: Crystalline and amorphous solids, Lattice and Unit cell, Seven crystal system and Bravais lattice, Symmetry operation, Miller Indices, Atomic Radius, Coordination number, Atomic packing fraction.	7	1
Module 2		
Semiconductor Physics: Introduction, Intrinsic and extrinsic	10	
semiconductors, Direct and Indirect band gap semiconductors,		2
semiconductor, carrier concentration in n-type and p-type		2
semiconductor, Fermi level, Law of Mass action, Charge neutrality,		
Hall effect.		
Module 3		
Dielectric properties: Polar and non-polar molecules, polarization,		
capacitance and dielectric constant, displacement vector, local electric		
field, Clausius– Mossotti relation, dielectric materials and	14	3,4
ferroelectricity.		
Optical properties: Electromagnetic radiation, light-matter interaction:		
reflection, refraction, absorption and transmission, photoluminescence		
and photoconductivity.		

Module 4		
Magnetic properties: Atomic structure and quantum numbers, orbital and spin angular momentum, magnetic moment in uniform and non-uniform magnetic fields: energy, force and torque, Larmor precession, Classification of magnetic material; diamagnetic, paramagnetic, ferromagnetic, antiferromagnetic and ferrimagnetic materials, magnetic domains and hysteresis Superconductors: Definition, Meissner effect, Type I & II superconductors, London equations, Cooper pair.	14	5

Mode of Transaction	Classroom activities		
	Authentic learning, case-based learning, collaborative learning, seminar, group activities.		
Mode of Assessment	1. Continuous Internal Assessment		
	(CIA) Internal Test		
	Assignment – Every student needs to write an assignment on a		
	given topic based on the available published literature		
	2. Seminar Presentation – A topic needs to be presented		
	and discussed with the class		
	3. Semester End Examination		

- 1. Wahab, Mohammad Abdul. *Solid state physics: structure and properties of materials*. Alpha Science Int'l Ltd., 2005.
- 2. Omar, M. Ali. *Elementary solid-state physics: principles and applications*. Pearson Education India, 1999.
- 3. Callister, William D., and David G. Rethwisch. *Fundamentals of materials science and engineering*. Vol. 471660817. London: Wiley, 2000.
- 4. Krishnan, Kannan M. *Fundamentals and applications of magnetic materials*. Oxford University Press, 2016.

Relevance of Learning the course/ Employability of the course

Learning the physics of materials is crucial for understanding the fundamental properties and behaviour of different materials. This knowledge enables students to understand the development of advanced materials with specific electrical, optical, dielectric, and magnetic properties, which are essential for various technological applications. This course also equips students with a good theoretical foundation and insights needed to innovate and solve real-world engineering and scientific challenges. It bridges the gap between fundamental physics and material science, driving progress in multiple cutting-edge fields.

Autor Sugaran	MAHATMA GANDHI UNIVERSITY Graduate School		RSITY	
	4 + 1 Integrated UG and PG Programme			
School Name	School of Energy Materials			
Programme	4 + 1 Integrated UG and PG Prog	ramme		
Course Title	Materials Chemistry			
Course Type	Minor			
Course Level	100-199			
Course Code	MG2DSCUEM141			
Course Overvie In this course on chemistry of materials, we intend to introduce to understanding of materials that has been used in today's technology. In introductory module, students delve into the periodic table to understand physical and chemical properties of elements, alongside exploring the struct intricacies of solids, crystalline imperfections, and the crucial structure-proprelationship. The curriculum progresses to encompass systems of technolog significance, including naturally occurring materials, optical and magin systems, and semiconductors, fostering an understanding of their synth properties, and applications. Additionally, students explore diverse materials the synthesis methods, from solution-based approaches to solid-state and hy techniques, preparing them to engineer novel materials tailored to specific			ntend to introduce basic today's technology. In the ic table to understand the ide exploring the structural e crucial structure-property s systems of technological als, optical and magnetic anding of their synthesis, explore diverse material to solid-state and hybrid s tailored to specific	
Semester	2	Credit	4	
Total Student	Instructional hours for theory	Instructional h	iours for	
		practical/lab wo	ork/liela work	
Duo uoguisito	45 Hours leaching Hours	JU Hours Practi	cum	
rre-requisite	I ne basic chemistry, familiarity with the periodic table, and introductory			
	knowledge of solid-state chemistry concepts are required.			

CO No.	Expected Course Outcome	Learning	PSO
	Upon completion of this course, students will be able to;	Domains	No.
1	To understand the physical and chemical properties of elements, the structural intricacies of solids, and analyze the significance of the structure-property relationship in materials chemistry	U, R	
2	To explore the synthesis, properties, and applications of naturally occurring materials, optical and magnetic systems, and semiconductors, fostering a comprehensive understanding of materials under technological significance	A	

3	To gain proficiency in diverse material synthesis methods, ranging from solution-based approaches to solid-state and hybrid techniques, enabling the engineering of novel materials tailored to specific applications.	An, E, S	
4	To investigate advanced materials such as biodegradable polymers, conducting polymers, composite materials, liquid crystal polymers, and nanomaterials, and evaluate their properties and diverse applications across various fields, including medicine, environmental science, and electronics.	I, An	
*Remember (R), Understand (U), Apply (A), Analyse (An), Evaluate (E), Create (C), Skill (S),			iill (S),
Interest (I)) and Appreciation (Ap)		

Module 1	Hours	CO No.
Introduction to Materials: Periodic table – physical and chemical properties of Elements; Structure of solids- description of unit cell and space lattices, Coordination number, APF for cubic and hexagonal close-packed structures, Miller indices, non-Crystalline structures properties of crystalline and amorphous structures, Crystal imperfections; Significance of structure-property relationship.		1
Module 2Systems under Technological Importance: Naturally occurring materials; Optical and magnetic systems based on Metals; Inorganic semiconductors- Optical and magnetic materials; Organic semiconductors - Optoelectronic materials; Superconductivity - Application of High-Temperature Superconductivity.	12	2
Module 3 Chemical and Non-Chemical approach to Material Synthesis Solution-based material synthesis-Precipitation methods, hydrothermal, etc., Solution based materials synthesis: Micro-emulsion, Sol-gel, Phase transfer reactions; Material synthesis using microwave radiation and ultra-sonic waves.		3
Module 4Advanced MaterialsProperties and applications-Biodegradable polymers-polylactic acid(PLA) and Polycaprolactone (PCL). Conducting polymers-polycetylene,polyaniline. Polypyrrole, Composite materials-introduction, generalclassification. Nanomaterials-Definition, nano scale. Carbon nano tubes(CNT) types and difference between Single wall NT, Multi wall NT;applications of nanomaterials in medicine, environment and electronics.		4

Mode of Transaction	Classroom activities
	Authentic learning, case-based learning, collaborative learning, seminar, group activities.
Mode of Assessment	2. Continuous Internal Assessment (CIA)
	Internal Test
	Assignment – Every student needs to write an assignment on a given
	topic based on the available published literature
	2. Seminar Presentation – A topic needs to be presented and
	discussed with the class
	3. Semester End Examination

- 1. A.R. West, Solid-State Chemistry and its applications
- 2. D.M. Adams, Inorganic Solids
- 3. P.A. Cox, The electronic structure and chemistry of solids
- 4. R.C. Evans, An Introduction to crystal chemistry
- 5. N.N. Greenwood, Ionic crystal, lattice defect and non-stoichiometry
- 6. C. Kittel, Introduction to solid state physics
- 7. C.N.R. Rao and J. Gopalakrishnan, New directions in solid state chemistry

Relevance of Learning the course/ Employability of the course

The course is designed to introduce the various aspects of Materials Chemistry -Candidates desires to learn chemistry related aspects of materials would benefit from the course. The course also introduces many aspects from a fundamental understanding, which would be beneficial to the students who is pursuing studies on materials

SEAND HILL	MAHATMA GAN	DHI UNIVERSIT	ΥY	
मिल्लाया आयुनस्वयन्त	Graduat	te School		
	4 + 1 Integrated UG and PG Programme			
School Name	School of Energy Materials			
Programme	4 + 1 Integrated UG and PG Prog	gramme		
Course Title	Fundamentals of Electrochemical	Devices		
Course Type	MDC			
Course Level	100-199			
Course Code	MG2MDCUEM101			
Course Overvie w	Energy is a fundamental issue facing society world-wide. Electrochemical devices play an important role in energy storage and conversion, especially at certain power-levels. Evolving renewable energy sources may have a critical dependence on electrochemical devices. The course is appropriate for students interested in the general topic of energy and more specifically electrochemical devices used to store or convert energy from one for to another.			
Semester	2 Credit 3			
Total Student Learning Time	Instructional hours for theory	Instructional ho practical/lab wo	urs for rk/field work	
	45 Hours Teaching Hours	15 Hours Tutori	al	
Pre-requisite	This course has no prerequisites and can be taken by anyone.			

CO	Expected Course Outcome	Learnin	PSO
No.	Upon completion of this course, students will be able to;	g Domains	No.
1	Students will be introduced to the principles and functioning of Electrode processes	U, R	
2	Gain knowledge of Electrochemical thermodynamics, kinetics, and transport phenomena.	U, An	

3	To be proficient in utilizing a variety of electrochemical techniques to analyze and interpret the behavior of electrochemical systems, enabling them to conduct advanced research and practical applications in the field.	Α, Ε	
4	Understand the fundamental physicochemical mechanisms and interactions that underlie in electrodes in an energy storage and conversion system	C,8	
*Remember (R), Understand (U), Apply (A), Analyse (An), Evaluate (E), Create (C), Sk (S), Interest (I) and Appreciation (Ap)			C), Skill

Module 1	Hours	CO No.
Introduction and Overview of Electrode processes: Electrochemical Cells and Reactions, Nature of Electrode-Solution Interface, Faradaic Reactions, Mass Transfer Controlled Reactions, Coupled Chemical Reactions	8	1
Module 2Electrochemical Thermodynamics: Basics of Electrochemical Thermodynamics, Liquid Junction Potentials. Kinetics of Electrochemical Reactions: Arrhenius Equation, Transition state theory, Butler Volmer model, Marcus Theory.	10	2
Module 3 Electrochemical Methods: Linear Sweep Voltammetry, Cyclic Voltammetry, Square wave Voltammetry, Chronoamperometry, Chronopotentiometry, Rotating Disk Electrode, Rotating Ring-disk Electrode, AC impedance, Spectro electrochemistry.	15	3
Module 4 Applications of Electrochemistry: Electron Transfer, Characterization of Inorganic Complexes, Catalysis, Supercapacitors and Batteries.	12	4

Mode of Transaction	Classroom activities
	• Class room lecture
	• Visual presentation
	Discussion/ Brainstorming
	Field activities
	Lab based activities
Mode of Assessment	Continuous Internal Assessment (CIA)
	1. Internal Test
	2. Assignment – Every student needs to write an
	assignment on a given topic based on the available published
	literature
	3. Seminar Presentation – A topic needs to be presented
	and discussed with the class
	3. Semester End Examination

- Electrochemical Methods: Fundamentals and Applications, Allen J Bard and Larry R. Faulkner, 2nd Edition, John Wiley and Sons
- 2. Modern Electrochemistry Ionics: Volume 1, John O'M. Bockris and Amulya K. N. Reddy, 2nd Edition, Plenum Press.

Relevance of Learning the course/ Employability of the course

A thorough understanding of electrochemical principles and techniques equips students with the skills necessary to innovate and improve devices like batteries, fuel cells, and biosensors. This expertise is highly sought after in industries focused on renewable energy, medical diagnostics, and electronic manufacturing. Additionally, the course enhances employability by preparing students for roles in research and development, quality control, and technical consulting, making them valuable assets in both industrial and academia. The knowledge gained from this course also provides a strong foundation for advanced studies and specialized careers in electrochemistry and related fields.

	MAHATMA GANDHI UNIVERSITY			
विद्यया अमृतमयन्ते	Graduate School			
	4 + 1 Integrated UG	and PG Programm	ie	
School Name	School of Energy Materials			
Programme	4 + 1 Integrated UG and PG Programm	e		
Course Title	Bio Energy			
Course Type	MDC			
Course Level	100-199			
Course Code	MG2MDCUEM102			
Course Overview	Bioenergy is one of many diverse resources available to help meet our demand for energy. It is a form of renewable energy that is derived from recently living organic materials known as biomass, which can be used to produce transportation fuels, heat, electricity, and products. This course aims to develop fundamental inputs required to meet the challenges of a sustainable energy future. The bioenergy industry is undergoing rapid growth due to the policy drivers underpinning the current interest in bioenergy, such as energy security and climate change. This course adopts a whole systems approach and enables students to critically appraise the sustainability of various biomass energy production routes.			
Semester	2	Credit	3	
TotalStudentLearning Time	Instructional hours for theory Instructional hours for practical/lab work/field work			
	45 Hours Teaching Hours 15 Hours Tutorial			
Pre-requisite	This course has no prerequisites and can be taken by anyone.			

CO No.	Expected Course OutcomeUpon completion of this course, students will be able to;	Learnin g Domains	PSO No.
1	Learn how Energy is obtained from biomass sources and their conversion technologies.	U, R	
2	Classify gasifiers and understand their application.	U	

3	Explain the basic concepts of biomass technologies and generation of biofuels.	An, S	
4	Understand on anaerobic digestion and biomass combined heat and power.	U, A	
5	Design a bio-energy production system.	C, S	
*Remember (R), Understand (U), Apply (A), Analyse (An), Evaluate (E), Create (C), Skill (S), Interest (I) and Appreciation (Ap)			

Module 1	Hours	CO No.
Introduction: Biomass- types- Energy from Biomass-Sources-Conversion Technologies - Biogas Plants-Classification-Advantages and Disadvantages- Carbon neutrality.	8	1
Module 2		
Methods for Energy From biomass -Thermal gasification- Classification of gasifiers- Application of gasifiers-Problems-Pyrolysis -Alternative liquid fuels. Combustion: Perfect, complete and incomplete, equivalence ratio, fixed Bed, fluid Bed, fuel and ash handling, steam cost comparison with conventional fuels.	10	2,3
Module 3		
Biomass technologies- Carbon cycle- Biofuels-Ethanol-bio diesel and green fuels-bio fuel from algae-Anaerobic digestion- Bio mass combined heat and power.	15	4
Module 4		
Bio-methanation: Microbial systems, phases in biogas production, possible feed stocks. Biogas plants, types, design, constructional details and comparison, biogas appliances, Burner, illumination and power generation, effect on engine performance	12	5

Mode of Transaction	Classroom
	activities Field
	activities
	Lab based activities

Mode of Assessment	Continuous Internal Assessment (CIA)
	1. Internal Test
	2. Assignment – Every student needs to write an assignment on a given topic based on the available published literature
	3. Seminar Presentation – A topic needs to be presented and discussed with the class
	3. Semester End Examination

- 1. Non-conventional energy sources; G. D. Rai, 2011, Fifth Edition, Khanna Publishers
- 2. Renewable energy systems, David M Buchla, Thomas E kissell, Thomas L Flyod
- 3. Bio Energy Technology Thermodynamics and costs. David Boyles, (1984), Ellis Hoknood Chichester
- 4. Biomass Gasification Principles and Technology. Tom B Reed, (1981)
- 5. Biogas Technology A Practical Handbook, Khandelwal, K.C, Mahdi, S.S. (1986) Tata McGraw Hill

Relevance of Learning the course/ Employability of the course

This course adopts a whole systems approach and enables students to critically appraise the sustainability of various biomass energy production routes. The module teaching and learning will comprise lectures and a site visit. The coursework requires students to either design a biofuel/bioenergy production system, or critically review a biofuel/bioenergy production process. The bioenergy industry is currently undergoing rapid growth.
